Depth Study

The two-way flat-plate system for the Upper Campus Housing Project was designed using ADOSS. The flat-plate system will be 10 " with no drop panels of normal weight concrete with strength of 4000psi and a steel strength of 60,000psi. The original depth for the system was determined using ACI 318 Table 9.5(c) an exterior panel without edge beams or drop panels, $t_{\text {min }}=6 \mathrm{n} / 30=(27 \mathrm{ft}-2 \mathrm{ft})(12 \mathrm{~m} / \mathrm{ft}) / 30=$ $10 "$. ACl 318 also specifies the minimum reinforcement in the slab as 0.0018 Ag . Therefore, $A s_{m i n}=0.0018(10 ")(12 ")=0.216 \mathrm{~m}^{2} / \mathrm{ft}(\# 5$ at $12 ")$. The columns for this system were designed by using interaction diagrams with a given moment and axial force. A starting size for the columns came from CRSI Handbook for shear requirements. This size is $26^{\prime \prime} \times 26^{\prime \prime}$. The minimum reinforcement from $\mathrm{ACl} \operatorname{IO} \operatorname{I}$ 6.8.6 for the columns is equal to 0.01 Ag . Therefore, Asmin $=0.0 \mathrm{I}\left(26^{\prime \prime}\right)\left(26^{\prime \prime}\right)=6.76 \mathrm{in}^{2}$ which is $12-\# 7$. There is also a maximum reinforcement ratio for columns of 0.08 Ag .

Loading

The gravity loads that were used to design the two-way flat-plate system were: dead, live, snow and roof live. For simplification of the design, the lateral loads were assumed to be taken by the shear walls.

Gravity Loads	
Dead	${ }^{*}$ Computed by ADOSS
Superimposed Dead	25psf
Live	80psf
Roof/Snow	30psf

UPPer Campus housing project NICOLE Hazy Structural AdVISOr: DP Hanagan

Two-Way Slab Design

The following is part of the ADOSS output for a typical bay in the North/South direction. The program will design the reinforcement, but for the purpose of this design the following information was used to make a more consistent design based on 12 " segments of slab.

An example calculation for the reinforcement is as follows for the column strip negative reinforcement at column \# I :

$$
\text { As }=6.15 \mathrm{~m}^{2} / 13.5 \mathrm{ft}=0.456 \mathrm{mn} 2 / \mathrm{ft}(\# 7 \text { at } 12 ")
$$

This calculation was done for each column strip and middle strip. The reinforcement was then distributed evenly throughout each strip. Below is an example of the floor reinforcement layout. All floors and directions are located in the Appendix page 75.

Upper Campus Housing project NicOle hazy
 Structural AdVISOr: Dr Hanagan

4. Upper campus Housing prosect NicOle Hazy
 Structural Advisor: Dr hanagan

Long and short bar extensions were completed by ADOSS which complies with ACl Figure 13.3.8.

The following design criterion was used in ADOSS to complete the design of the slabs:

Distance from reinforcement to tension face $=1.5^{\prime \prime}$
Minımum Bar Size $=\# 4$
Minımum Clear Bar Spacıng $=6 "$
100\% Column Fixity

Column Design

The columns for the Upper Campus Housing Project were designed using interaction diagrams from the Design of Concrete Structures textbook. Using an excel spreadsheet an axial force and moment on each column was determined. Interaction diagrams were then used to find a reinforcement ratio. Each axial force was computed using the tributary area of the column and floor gravity loads. The axial force and the moment were then put into the following equations to get a reinforcement ratio needed for each column.

$$
K n=\frac{P u}{\phi f^{\prime} c(\mathrm{Ag})} \quad \mathrm{Rn}=\frac{\mathrm{Mu}}{\phi^{\prime} c(\mathrm{Ag}) h}
$$

The interaction diagram used for this design is located in the Appendix on page 90. The lateral ties for each column were designed based on the following spacing requirements: $16 \times$ diameter of the longitudinal bars (14 "), $48 \times$ diameter of the tie ($48.375^{\prime \prime}$), and the least dimension of the column (26"). Therefore, the lateral ties will be spaced at 14 ".

The following are design criteria for the design of the concrete columns for a two-way flat-plate system:

$$
\begin{aligned}
& \text { Minımum Concrete Cover }=1.5 " \\
& \text { Strength Reduction Factor }=0.65 \\
& \text { Lateral ties for }<\# 10 \text { bars }=\# 3
\end{aligned}
$$

Shown on the next page is the column schedule for the roof columns. Complete column schedules can be viewed in the Appendix page 91.

Colma		P （1）	Whent	5－x（6xa）	Rembr．	Tr
A－G	3 J	T2ETG	241.5	26×26	12－ET	
A． 6.5	135	26920	$36 \mathrm{E}, 2$	26×26	12－［5	W914＇
8．3－0	0	0	0	26×26	－	－
E－1	JE	14400	248.5	26×26	12－5T	W614＇
E－2	20	53.700	246.5	26×26	12－館	® 14^{\prime}
E－3	405	TJJC0	2448	26 $\times 26$	12－世T	W914＇
E． 4	405	103600	20．5	26×26	12－4T	＠ $1{ }^{\text {¢ }}$
E－ 5	405	103600	2448	26×26	12－5T	
B．C．E．E	－	50000	365.2	26×26	12－臨	＠ 14^{\prime}
B．T－G	100	32266	344	26 $\times 26$	12－既	＠${ }^{\text {¢ }}$
B．D－0	0	0	0	26×26	－	－
c．3－6．2	－	50000	36 E 2	26×26	12－5T	
0.40 .3	0	0	0	26 $\times 26$	－	
$\mathrm{C}-1$	TE	14400	344.4	26 $\times 26$	12－5T	あ14＇
C－2	0×0	130500	ABED	26 $\times 26$	12－5T	あ边
C－3	T02	134784	ABED	26×26	12－5T	
C－4	T02	179 12	ABED	26×26	12－एT	あ ¢ ${ }^{\text {a }}$
C－	T02	179 フ12	ABED	26×26	12－5T	あ614＇
C－G	304	ED3CD	3 EO．6	26 $\times 26$	12－5T	あ ¢ ${ }^{\text {¢ }}$
［0．0．6	0	0	0	26 26	－	－
－1	0	0	0	26 $\times 26$	－	－
52	1 76.5	33096	19 T .2	26×26	12－5T	あ ${ }^{\text {a }}$
5.3	336	64512	240.2	26 $\times 26$	12－5T	
54	336	D0016	22D．2	26×26	12－एT	W614＇
E．	336	D0016	26D． 4	26×26	12－5T	
56	312	59904	10.7 .2	26×26	12－5T	
EE－G．D	B4	16170	3 B6．2	26×26	12－5T	W614＇
FG．B	90	17200	3EED	26 $\times 26$	12－5T	あ ¢ ${ }^{\text {¢ }}$
FT	6 T .6	12900	246．J	26 26	12－4T	以 $1{ }^{\text {¢ }}$
FD	405	TJT00	244．5	26 $\times 26$	12－5T	
F6	405	JTJ00	2448	26 26	12－既	W614＇
F10	240	40000	241.5	26 $\times 26$	12－5丁	あ ¢ ${ }^{\text {¢ }}$
F11	己5	54720	246．${ }^{\text {a }}$	26×26	12－館	※14＇
F．2．12	0	0	0	26 26	－	－
F．E－G．D	60	1720	366.2	26 $\times 26$	12－ET	® 1 4＇
F．GI2	0	0	0	26 $\times 26$	－	－
C－T	BI	1 EBE2	344.4	26 $\times 26$	12－5T	あ 1 4＇
C－D	T02	13 4TB4	fBED	26 $\times 26$	12－ET	队915＇
C－9	T02	134784	ABED	26 $\times 26$	12－館	＠ 1 ¢
C． 10	430	DOG40	ABED	26 26	12－5T	
C．11	200	53 TCO	344.4	26 $\times 26$	12－臨	あり15＇
G．1－6D	90	1 J200	3 36．2	26 $\times 26$	12－臨	あ14＇
63．11．J	0	0	0	26×26	－	－
C．GGD	B4	1610	365.2	26×26	12－5T	W614＇
$\mathrm{H}-11$	0	0	0	26×26	－	－
H．1．${ }^{\text {H }}$	0	0	0	26 $\times 26$	－	\cdot
1T	204	30100	220.4	26 $\times 26$	12－5T	あ ¢ ${ }^{\text {4 }}$
1－	336	64612	265	26 $\times 26$	12－4T	
$1 \cdot \theta$	336	64512	246	26 $\times 26$	12－5T	あめ14＇
1.10	θ T．E	$18 T 20$	220.4	26 26	12－館	＠ 1 4＇

upper campus Housing project NicOle Hazy
 Structura AdVISOr: DP Hanagan

Foundations

The new foundation system for the Upper Campus Housing Project will be square footings under each column. The foundation shown below is the curtain wall down to the wall footing.

Lin
 UPPer Campus HOUSIn9 Project NICOLE Hazy
 Structura AdVISOr: DP Hanagan

One-Way Design

The center section and the end sections of the floor plan (shown below) were designed as one-way systems. These one-way systems were also designed using ADOSS. They were checked with a manual calculation using a maximum moment of $\mathrm{wL}^{2} / 8$.

A beam was designed to span across the two columns circled below because the span was too high for the one-way system. The beam was designed by hand using a maximum moment of $w L^{2} / 8$ also. It was designed as a T-beam for flexure and shear. The beam will have two rows of 5\#8's for flexure and \#3's for shear (1 at 2" and 18 at $9 ")$. The beam calculations can be found in the Appendix on page

IOI. Also shown below is a picture of the beam designed.

Upper campus Housing project NicOle Hazy
 Structura AdVISOr: DP Hanagan

Lateral Load Calculations (per ASCE7-O2)

Seismic Use Group
Site Classification
Ss

S

Fa
FV
Seismic Design Category
R

।

।

D
0. 127
0.054
1.6
2.4

A

3
I.O

Table 9.I. 3
9.4.1.2.1

Figure 9.4.1. I a
Figure 9.4.l. Ib
Table 9.4.1.2a
Table 9.4.1.2b

Table 9.5.2.2
Table 9.I. 4

$$
\begin{aligned}
& S m s=F a S s=1.6(0.127)=0.203 \\
& S_{m}=F_{V S}=2.4(0.054)=0.129 \\
& S_{D S}=(2 / 3) S m s=0.135 \\
& S_{D I}=(2 / 3) S_{m}=0.086 \\
& T=C t h n^{x}=0.02(100)^{0.75}=0.632 \\
& C S=S_{D S}(R / I)=0.045 \\
& C s m a x=S_{D I} /(T(R / I))=0.045 \\
& C s m i n=0.044 I S_{D S}=0.006 \\
& V=C s W=0.045(19875.5 K)=894.4 K \\
& K=1+((0.632-0.5) / 2)=1.07
\end{aligned}
$$

4 UPPer campus HOUSIIn Prosect NICOLE Hazy
 Structural AdVISOR: DF Hanagan

Lateral Design

The lateral shear walls for this structure were designed using a stiffness analysis using a procedure described in Chapter 3 of the PCl Design Handbook. The forces on the building were distributed to each shear wall accordingly based on the stiffness of that wall. Each wall is IO" thick reinforced concrete. The seismic load case was used because it controls the design for these walls. The distribution of the seismic load to each floor is shown below. The corresponding wind loading diagram is located in the Appendix on page 37. Because there is an expansion joint located where the building angles, the lateral design can be complete assuming that the building works as two

separate halves. The reinforcement can be
summarized as follows:

Shear Wall Design			
Type	Horizontal	Vertical	Vertical
		(First and Last 12")	
A	\# 1 O at 12"	20-\# I O's	\#5 at 12"
B	\#5 at 12"	20-\#8's	\#5 at 12"

The location and the types of shear walls are shown on the page 24. A complete design of the shear walls is located in the Appendix page 103.

upper Campus Housing project NicOle Hazy
 Structural AdVISOR: DP Hanagan

The detail to the right is a column with 12
longitudinal bars and the required placement of lateral ties. The detail shown below is an example of how the shear wall will connect to the foundation.

Us upper campus Housing project NicOle Hazy
 Structura Advisor: Dr hanagan

Drift Check

$$
\begin{aligned}
& \Delta=\left(\mathrm{Ph}^{3} / 3 \mathrm{El}\right)+(2.78 \mathrm{Ph} / \mathrm{AE}) \\
& E=33(\mid 45 \mathrm{pcf})^{1.5}(4000 \mathrm{psI})^{0.5}=3644 \mathrm{ks} \mid \\
& \Delta_{\text {allowable }}=\mathrm{H} / 400=105.5 \mathrm{ft}(\mid 2 \mathrm{~m} / \mathrm{ft}) / 400=3.165^{\prime \prime}
\end{aligned}
$$

Deflection calculations were done for each wall using an Excel spreadsheet.
These calculations can be viewed on the next page. All deflections are less than the allowable limit. It is also important to note that the deflection at the expansion joint was considered for the two halves of the bulding hitting each other and is OK.

upper campus housing project Nicole Hazy
 Structural AdVISOr: Dr Hanagan

Left				
Wall	Length	Area	1	Deflection
A	237	2370	11093378	0.01883
B	237	2370	11093378	0.01883
C	171.96	1720	4237416	0.03113
D	60	600	180000	0.31538
E	60	600	180000	0.31538
F	216	2160	8398080	0.0216
G	312	3120	25309440	0.01296
I	336	3360	31610880	0.0118
2	120	1200	1440000	0.06113
3	120	1200	1440000	0.06113

Right				
Wall	Length	Area	1	Deflection
A	336	2370	31610880	0.01612
B	237	2370	11093378	0.01883
C	237	1720	11093378	0.02437
D	248.04	600	12716978	0.06153
1	216	3360	8398080	0.01586
2	120	1200	1440000	0.06113
3	120	1200	1440000	0.06113

